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Abstract 
 
A general formulation is developed for the tolerance analysis of dynamic equilibria in a multibody system undergo-

ing prescribed rotational motion, with applications including robots, spacecraft, propulsion and power generation sys-
tems, and sensors and actuators. In a state of dynamic equilibrium, a subset of the generalized coordinates assumes 
constant values while the remaining coordinates vary and respond in time. Manufacturing tolerances can be mathe-
matically represented by probabilistic distributions or statistical variables through either an analytical approach or a 
Monte Carlo simulation. In the present tolerance work, the tolerances of design parameters including lengths, stiff-
nesses, inertias, and attachment positions are examined. In order to analytically calculate the statistical response of the 
dynamic equilibrium positions to such tolerances, the first-order sensitivities of the equilibria with respect to parameters 
are calculated. To illustrate the method’s accuracy and computational efficiency, two numerical examples are consid-
ered, and the statistical results obtained analytically for the equilibria are compared with those calculated through 
Monte Carlo simulation. In some cases, an equilibrium configuration can have an operating condition for which the 
response has zero standard deviation to perturbations of a design parameter. That condition can be a useful design point 
to the extent that typical manufacturing tolerances or other sources of variation would have no effect on the dynamic 
equilibrium configuration.  
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1. Introduction 

In a dynamic equilibrium state, a subset of general-
ized coordinates assumes constant values while the 
remaining coordinates vary and evolve in time. Such 
equilibria can develop in multibody systems that un-
dergo prescribed rotational motions, as is the case in 
some applications including robotics, deploying 
spacecraft appendages, propulsion and power genera-
tion, and microelectromechanical sensors and actua-
tors. Examples of open loop systems that exhibit dy-
namic equilibria have been discussed [1-3] in the 
context of Newton, Lagrange, and Kane methods. 
However, dynamic equilibria often cannot be calcu-

lated efficiently through existing commercial codes 
[4-6] to the extent that they do not capture the appro-
priate physics of the system at hand. In one approach 
to a constrained multibody system’s dynamic equilib-
rium configuration, the transient response of certain 
coordinates can be simulated for prescribed input 
motion until the coordinates reach steady state at the 
values associated with the equilibrium. However, the 
computational effort associated with that time integra-
tion procedure, with the goal of only identifying an 
equilibrium state, can be costly and prohibitive. 

Choi et al. [7] described a general formulation to 
calculate directly the coordinate values in a dynamic 
equilibrium state for a constrained multibody system 
having prescribed rotational motion. In that case, 
relative coordinates [8] and a velocity transformation 
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technique [9] were used to obtain the equations of 
motion and identify the equilibrium values of the 
coordinates. 

However, in the field, unwanted dynamic equilib-
rium positions of a mechanical system having pre-
scribed rotational motions can arise from the uncon-
trolled imposed angular velocity or the manufacturing 
tolerances that are associated with design variables. 
Those manufacturing tolerance errors are preferen-
tially maintained within a certain range in order for 
the system to achieve satisfactory performance. Al-
though the response error can be improved by tighten-
ing the component and manufacturing tolerances, 
such a remedy is often costly. The constraints of 
manufacturing expense and response errors frame a 
mechanical design optimization problem.  

The mechanical error in a mechanism or a linkage 
system originates primarily from clearances within its 
joints, and a rich literature describes the effects of 
joint clearance and contact modeling issues for me-
chanical systems. The pioneering work of Hartenberg 
and Denavit [10] addressed the issue of mechanical 
errors in linkage systems, and they estimated the 
magnitude of mechanical errors based on the maxi-
mum allowable tolerances for the link lengths. In 
essence, that deterministic approach focused on the 
worst case combination of the tolerances present. 
Garrett and Hall [11] developed a statistical means to 
calculate the mechanical errors arising from joint 
clearance tolerances; they represented the errors in 
terms of mobility bands calculated through Monte 
Carlo simulation of a four-bar linkage system. 
Dubowsky and Freudenstein [12] introduced the con-
cept of an impact pair for the joints in a linkage. Re-
cently, with application to continuous contact model-
ing issues in multibody systems, Ravn [13] suggested 
a continuous analysis approach for planar multibody 
systems in terms of a multibody dynamics formula-
tion and Hertzian contact. Flores et al. [14] presented 
a method to deal with the influence of the spherical 
clearance joints in spatial multibody systems by using 
a continuous contact force model. 

With respect to a statistical view of joint clearance 
problem, Lee [15] presented an analytical model for 
effective link length that is based upon a first-order 
Taylor series expansion. Lee and Gilmore [16] subse-
quently generalized that method to incorporate the 
uncertainties associated with pin locations and varia-
tions in link length. With a generalized vector loop-
based model to represent small kinematic adjustments, 

Chase et al. [17] presented the direct linearization 
method (DLM) for the tolerance analysis of two-
dimensional mechanisms. Choi et al. [18] present a 
computational algorithm for the dynamic analysis of 
multibody systems considering both probabilistic and 
statistical properties. The literature associated with the 
effects of joint clearance has primarily emphasized 
behavior and contact modeling issues, as well as dy-
namic and kinematic responses.  

It is an objective of this study to present an algo-
rithm which deals with the effects of tolerances in 
various design parameters upon the dynamic equilib-
ria of spatial multibody systems undergoing a pre-
scribed rotational motion. A general multibody for-
mulation, relative coordinates [8], and a velocity 
transformation technique [9] are used to obtain the 
equations of motion and to identify the dynamic equi-
libria. The tolerance analysis is based on a statistical 
approach [18] and a Monte Carlo simulation.  

In order to analytically calculate the statistical re-
sults of the dynamic equilibrium positions, the first-
order sensitivities of the dynamic equilibria with re-
spect to a design parameter are required. Therefore, 
an efficient computational algorithm based upon di-
rect differentiation is newly developed to calculate the 
first-order sensitivities with respect to the design pa-
rameter. To verify the method’s effectiveness, two 
numerical examples are described: an open loop sys-
tem and a closed loop system. The statistical results 
obtained analytically are compared with those ob-
tained by Monte Carlo simulations, and the relative 
advantages and disadvantages of two methods are 
outlined. 

 
2. Tolerance analysis 

The general response of a complex spatial mecha-
nism having a multiplicity of design variables, such as 
a spring’s stiffness, inertia, a joint’s attachment posi-
tion, and link lengths, is determined through a multi-
body dynamics formulation [19]. The response met-
rics include positions, velocities, accelerations, and 
forces throughout the system. Generally, explicit 
mathematical relationships between the design vari-
ables and the response metrics are not available, but 
the influence of the tolerances on the statistical prop-
erties of those metrics can be obtained through the 
procedure outlined in what follows. 

The response variable Y , if not known explicitly, 
can be expressed symbolically through simulation as 
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the function 
 

1 2( , , , )nb b b=Y Y …                      (1) 
 

of independent design variables ib . By expanding 
1 2( , , , )nb b bY …  about the mean values ib , 
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If the means and variances of the ib  are known, 

the mean and the variance of Y  can likewise be 
estimated by a Taylor series expansion. The first-
order mean of Y , denoted Y , becomes 

 

1 2( , , , )nb b b=Y Y …                    (3) 
 

and can be approximated in terms of ib . The first-
order variance of Y , denoted ( )Var Y , likewise 
becomes 
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where Yσ  denotes the standard deviation of Y  and 

( , )i jCov b b  denotes the covariance of the two distinct 
variables ib  and jb . The partial derivative / ib∂ ∂Y  
represents the sensitivity of Y  with respect to ib , 
and it is evaluated at the mean values of the ib . 
Specifying the ib  to be mutually independent, the 
second term on the right-hand side of (4) vanishes. 
The variance of Y  simplifies to 
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When the second-order term in the Taylor expan-

sion is incorporated, the mean of Y  is refined by the 
second-order approximation 
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where the second derivatives are also evaluated at the 

mean values of the ib . To estimate the second-order 
variance of Y , the third and the fourth moments of 
the ib  are required, but those quantities are difficult, 
at best, to obtain. In the present simulations, the first-
order variance of the response is generally sufficiently 
accurate for most practical problems, and for that 
reason, the variance and the mean of Y  are calcu-
lated through (5) and (6). 

When the variable ib  follows a specific probabil-
ity distribution, its variance can be determined by its 
“tolerance,” which is a more frequently-used term in 
manufacturing applications. The variance and toler-
ance are related by 

 
21( )

9 ii bVar b T=                      (7) 

 
for the normal distribution [15], and by 

 
21( )

3 ii bVar T=b                              (8) 

 
for the uniform distribution [15], where 

ibT  repre-
sents the tolerance of variable ib . Once the tolerance 
of a design variable is known, the variance of the 
design variable can be calculated through (7) or (8). 
To calculate the statistical properties of Y  from (5)-
(6) along with (7)-(8) when the tolerance 

ibT  is 
known, the first-order sensitivity / ib∂ ∂Y  and the 
second-order sensitivity 2 2/ ib∂ ∂Y  are required. 

 
3. Sensitivity analysis of dynamic equilibria 

In three-dimensional space, the configuration of a 
free rigid body is described by six coordinates, and 
the coordinate set of the i -th body in a multibody 
system is denoted here as ix . Quantities in bold type-
face denote vectors or matrices. With the system 
comprising n  rigid bodies, the system-level set of 
Cartesian coordinates 

 

1 2

TT T T
n⎡ ⎤= ⎣ ⎦x x x x                      (9) 

 
encompasses sets for the individual bodies. In the 
most general case, the equations of motion for a con-
strained multibody system can be expressed [20, 21] 

 
T+ =xMx Φ λ Q                           (10) 
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where M , Q , and λ  denote the generalized mass 
matrix, the generalized force vector, and the Lagrange 
multiplier vector, respectively. The Jacobian con-
straint matrix xΦ  comprises partial derivatives of 
the constraint equations Φ  with respect to the set of 
coordinates in Eq. (9). 

The equations of motion are cast in a reduced form 
by introducing the relative generalized coordinates q  
through 

 
=x Bq ,                                  (11) 

 
where B  is the velocity transformation matrix [9]. 
When the multibody system is in dynamic equilib-
rium, a subset of the q , denoted by Pq , defines the 
constrained system’s constant rotational motions. The 
remaining q  are denoted by Rq . Eq. (11) then be-
comes 

 
P P R R= +x B q B q                    (12) 

 
where PB  and RB  are the velocity transformation 
matrices associated with Pq  and Rq . 

By using Eq. (12), the equations of motion (10) are 
reduced to [7] 
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R

cT c
R + =qM q Φ λ Q                  (13) 

 
where 
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R R P P R R= − +Q B Q B MB q MB q ,      (15) 
 

Note that Pq  is zero vector since Pq  is constant. 
cΦ  represents the cut-joint constraints at any points 

where kinematic chains in the system were cut to 
generate a tree structure [8]. A closed loop system 
contains one or more independent, but closed, kine-
matic loops, and it can be transformed into an open 
loop system by conceptually cutting internal joints. In 
that view, the number of cut joints is same as the 
number of closed loops. The acceleration constraint 
equations become 

 

R

c c
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where 
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R R R
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R R t R tt= − − −q q qγ Φ q q Φ q Φ  .       (17) 

Eqs. (13) and (16) govern the dynamics of a con-
strained multibody system.  

In a state of dynamic equilibrium, the Rq  are con-
stant. Therefore, Rq , Rq , and Pq  become zero at 
dynamic equilibrium state. At that condition, the roots 
of the following nonlinear homogeneous algebraic 
equations Π  and cΦ  then determine the exact 
dynamic equilibrium positions and Lagrange multi-
pliers: 

 
( ) ( )

R

T cT c
R R P PΠ = − + =qq B MB q Q Φ λ 0      (18) 

( )c
RΦ =q 0 .                            (19) 

 
A Newton-Raphson algorithm [22] is used to find 

the solutions. However, the standard Newton-
Raphson method breaks down at points where the 
Jacobian matrix is singular.  

The sensitivity of the equilibrium configuration 
with respect to the scalar design variable b  is con-
sidered next. By differentiating Eqs. (18) and (19) 
with respect to the design variable b , the sensitivity 
equations now become 

 
cR

b cb
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In the final step, Eqs. (20) and (21) are written in 

the matrix form 
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in terms of sensitivities for the coordinate vector Rq  
and the Lagrange multipliers cλ  at the dynamic 
equilibrium positions.  

Since the Newton-Raphson method is used in cal-
culating the dynamic equilibrium positions, the Jaco-
bian matrix in Eq. (22) is the same as used in the 
Newton-Raphson iterations. Therefore, sensitivities of 
dynamic equilibria with respect to a design variable 
can be obtained by solving the linear Eqs. (22) after 
the calculation of the partial derivatives of the resid-
ual vector with respect to the design variable. The 
computational efficiency of the sensitivity analysis is 
facilitated by using the same Jacobian matrix, having 
already been calculated in the Newton-Raphson stage. 
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4. Applications and examples 

In this section, two numerical examples are shown 
to demonstrate the performance of the present method. 
The first example is a spatially rotating double pendu-
lum system, which evaluates its accuracy and compu-
tational efficiency for an open loop system. The sec-
ond one is the mechanical speed governor mechanism, 
which verifies that the present method is applicable to 
a closed loop system. In particular, in the second ex-
ample, various design parameters are considered. To 
verify the present method’s accuracy, effectiveness, 
and computational efficiency, the calculated statistical 
results of examples are compared with those obtained 
from the traditional computationally-intensive Monte 
Carlo methods that were used previously.  

 
4.1 Spatially rotating double pendulum 

As the first example, Fig. 1 depicts a spatially-
rotating 3-DOF (degree-of-freedom) double pendu-
lum. This system consists of two single rigid bodies 
which form an open kinematic loop. The first uniform 
bar, illustratively of mass 1 3m kg=  and length 

1 1L m=  is connected by a pin joint to a shaft that 
rotates about the vertical axis at a constant angular 
velocity Ω . The second uniform bar, illustratively of 
mass 2 3m kg=  and length 2 1L m= , is connected by 
a pin joint to the first bar. For a sufficiently high rota-
tion rate, a stable equilibrium configuration with non-
trivial 1θ  and 2θ  develops. With the generalized  

 

 
 
Fig. 1. A spatially-rotating double pendulum having nontriv-
ial equilibrium positions at sufficiently high Ω . 

coordinate, constant at that condition, the scalar pq  
and vector Rq  become 

 
Pq = Ω                           (23) 

[ ]1 2, T
R θ θ=q .                       (24) 

 
Fig. 2 depicts the dependence of the system’s equi-

librium angles on the shaft’s angular velocity. Only 
the trivial equilibrium is present for low shaft speeds, 
and that position bifurcates at the critical speed, 
which for the chosen parameter values becomes 2.67 
rad/s. The trivial equilibrium bifurcates symmetrically 
with dynamic equilibria forming at both positive and 
negative values of 1θ  and 2θ . In what follows, the 
positive roots of Eq. (18) are taken. 

The first bar’s length, 1L , is taken as the design 
variable and the sensitivities of the dynamic equilib-
rium angles Rq  with respect to 1L  can be obtained 
from Eq. (20).  

Figs. 3 and 4 show the manner in which the stan-
dard deviations of dynamic equilibrium angles 1θ  
and 2θ  depend upon the spindle’s driving angular 
velocity. It is assumed in this study that the tolerance 
of 1L  has a normal distribution with 99.73% reliabil-
ity. The variance of dynamic equilibrium angles can 
be obtained from Eqs. (5) and (7). The predictions of 
the present method are also compared with results 
from Monte Carlo simulation in Figs. 3 and 4; the two 
sets of results are nearly identical and barely distin-
guishable from one another on the scale of the figure. 
Table 1 compares performance of the Monte Carlo 
method with respect to the number of samples. How-
ever, the Monte Carlo approach requires some 30,000 
simulation samples to achieve the same accuracy, and  

 

  
Fig. 2. Dynamic equilibrium positions (positive root) of a 
spatially-rotating double pendulum. 
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Table 1. Performance of the Monte Carlo method with re-
spect to the number of samples. 0.3% of tolerance of the 1st 
link’s length is considered. 
 

 

  
Fig. 3. Standard deviation of 1st angle with respect to the 
variation of the length of the 1st link. The present analytical 
solution (solid line) and the Monte Carlo simulation with 
30,000 samples (dash-dot line) are nearly indistinguishable. 

 

  
Fig. 4. Standard deviation of 2nd angle with respect to the 
variation of the length of the 1st link. The present analytical 
solution (solid line) and the Monte Carlo simulation with 
30,000 samples (dash-dot line) are nearly indistinguishable. 

 
a correspondingly high computational burden relative 
to the present approach. 

Fig. 5 shows graphically the accuracy of the Monte 
Carlo method. As the number of samples of Monte 
Carlo simulation increases, the first angle’s standard 
deviation line is close to the line which is obtained by 
the present analytical method. Therefore, the present 
method offers a substantial computational savings and 
accuracy that is independent of the sample size. 

  
Fig. 5. Standard deviation of 1st angle. 0.3% of tolerance of 
the 1st link’s length is considered. The solid line represents 
the present analytical solution and the dash-dot lines repre-
sent the Monte Carlo simulation results with respect to vari-
ous samples (1,000, 5,000, and 30,000). 

 

  
Fig. 6. A governor mechanism that has two closed kinematic 
loops, revolute joints labeled REV, a translational constraint 
TRAN, and the distance constraints DIST. 

 
4.2 Mechanical speed governor mechanism 

Fig. 6 shows a spatial 2-DOF governor mechanism 
formed of two closed kinematic loops. The first body 
is the upper spindle in which coordinate system 

1 1 1x y z− −  is fixed and which is driven at angular 
velocity ω ; the second and third bodies are pendu-
lums having point masses at their outer ends; and the 
fourth body is the lower collar which is free to slide 
vertically on the spindle’s axis. The spindle is con-
nected to each pendulum through revolute joints, and 
the spindle and collar are connected by a translational 
joint and a spring k . Point iO  represents the center  

Samples number Error at 4.00 rad/s 
Increase in computation 

time over the present 
method 

1,000 3.35% 901% 
5,000 1.64% 4,500% 
30,000 0.22% 30,227% 
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Table 2. Inertia properties for rigid body elements that com-
prise the governor mechanism. 
 

Body Mass 
(kg) 

Ix’x’  
(kg m2) 

Iy’y’  
(kg m2) 

Iz’z’  
(kg m2) 

Spindle 200 25 50 25 
Mass 1 1 0.00036 0.00036 0.00036 
Mass 2 1 0.00036 0.00036 0.00036 
Collar 1 0.0004 0.00045 0.0004 

 
Table 3. Initial coordinate values in global coordinates for the 
governor mechanism. 
 

Point X (m) Y (m) Z (m) 
O1 0 0.2 0 
O2 0.1131 0.0869 0 
O3 -0.1131 0.0869 0 
O4 0 0.05 0 
P 0.0566 0.1434 0 
Q -0.0566 0.1434 0 

 
of a body’s Cartesian reference frame in space. For 
illustration, the collar and each pendulum are con-
nected by joints having a fixed separation distance 
0.1092 m , and the stiffness and the unstretched 
length of the spring are taken to be 1000 /N m  and 
0.15 m . Table 2 lists the inertia properties of each 
component, and the coordinates of various points in 
Fig. 6 that define the system’s configuration are listed 
in Table 3.  

The constraint coordinate Pq  is taken to be the 
driving angular velocity Ω , and the Rq  are defined 
by 

 
[ ]2 3, , T

R d θ θ=q ,                   (25) 

 
where d is the relative translational distance between 
the spindle and the collar, and 2θ  and 3θ  are the 
relative angles of the revolute joints 2 and 3. In the 
system’s initial state, the relative distance d  is set at 
0.15 m  and 2θ  and 3θ  are assigned at 0.7854 rad, 
respectively. 

Fig. 7 shows the manner in which the dynamic 
equilibrium position, as measured by d , depends 
upon the spindle’s driving angular velocity. The sepa-
ration between the spindle and collar decreases mono-
tonically with speed. The first design parameter of 
interest in this case is taken to be the spring’s stiffness 
k , and the sensitivities with respect to k  are ob-
tained from Eq. (22). Fig. 8 depicts the manner in  

  
Fig. 7. Dynamic equilibrium position d of the governor’s 
collar. 

 

  
Fig. 8. Standard deviation of equilibrium position d with 
respect to the variation of the spring’s stiffness. The present 
analytical solution (solid line) and the Monte Carlo simula-
tion with 30,000 samples (dash-dot line) are nearly indistin-
guishable. 

 
which the standard deviation of the collar’s equilib-
rium position depends on the spindle’s angular veloc-
ity. It is assumed in this study that the tolerance of a 
spring’s stiffness has a normal distribution with 
99.73% reliability. 0.3% and 1.0% of manufacturing 
tolerances are considered. The variance of dynamic 
equilibrium position can be obtained from Eqs. (5) 
and (7). The predictions of the present method are 
also compared with results from Monte Carlo simula-
tion in Fig. 8; the two sets of results are nearly identi-
cal and barely distinguishable from one another on 
the scale of the figure. 

In particular, when the spindle’s driving angular 
velocity is set at 11.02 /rad s , the standard deviation 
of dynamic equilibrium position becomes zero. 
Therefore, the manufacturing tolerance and small 
variation in spring’s stiffness have no effect on dy-
namic equilibrium position d  at the 11.02 /rad s  
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operating point. The reason is that the dynamic equi-
librium position becomes the same value of the un-
stretched length of the spring, and consequently the 
resultant spring force becomes zero when the spin-
dle’s angular velocity is set at 11.02 /rad s . 

Table 4 compares the performance of the Monte 
Carlo method with respect to the number of samples. 
Fig. 9 shows graphically the accuracy of the Monte 
Carlo method. However, to achieve reliable statistical 
results from the Monte Carlo method requires some 
30,000 simulation samples and a correspondingly 
high computational burden relative to the present 
method. Therefore, the present method offers a sub-
stantial computational savings and accuracy.  

Fig. 10 shows a parametric study of the standard 
deviations of collar’s equilibrium position. Three 
design parameters are considered: the spring’s stiff-
ness, ball’s mass, and the distance joint’s attachment 
points, the relative positions of points P and Q. Simi-
larly, there are three zero standard deviation points, 
respectively. In this study, 0.3% of the tolerance for 
each design parameter is considered.  

 
Table 4. Performance of the Monte Carlo method with re-
spect to the number of samples. 0.3% of tolerance of spring’s 
stiffness is considered. 
 

 

  
Fig. 9. Standard deviation of collar’s equilibrium position. 
0.3% of tolerance of spring’s stiffness is considered. The 
solid line represents the present analytical solution and the 
dash-dot lines represent the Monte Carlo simulation results 
with respect to various samples (1,000, 5,000, and 30,000). 

In order to verify the effectiveness of the zero stan-
dard deviation point, Monte Carlo simulations were 
conducted with increasing the tolerance value. The 
ball’s mass was chosen as the design parameter, since 
it is relatively easier to adjust the mass than the 
spring’s stiffness in the field of manufacturing. Table 
5 further compares the standard deviations of the 
dynamic equilibrium position d  at the zero standard 
deviation point 8.85 rad/s with those at the near 9.00 
rad/s. 30,000 samples were used in those simulations. 
It is noticeable that the standard deviation of d  at 
8.85 rad/s with 30% tolerance value is much smaller 
than that at 9.00 rad/s with 0.3% tolerance value. 

Therefore, these three zero standard deviation 
points are useful design points, because variation in 
each parameter’s value has nearly no effect on dy-
namic equilibrium position d  at each zero standard 
deviation point. The optimum design point which 
satisfies the maximum allowable manufacturing de-
sign spec can be also found from composing an opti-
mization problem with three design parameters. 

 
Table 5. Standard deviations of dynamic equilibrium position 
d with respect to the various tolerance values of ball’s mass at 
the driving angular velocity 8.85 rad/s and 9.00 rad/s. 
 

Tolerance (%) 
Standard devia-
tion of d at  Ω = 
8.85 rad/s (µm) 

Standard devia-
tion of d at  Ω = 
9.00 rad/s (µm) 

0.03 0.000938 0.534 
10 0.031 17.790 
20 0.063 35.590 
30 0.094 53.418 

 

  
Fig. 10. Standard deviation of the collar’s position with re-
spect to 3% of tolerances of various parameters; spring’s 
stiffness, ball’s mass, and the attachment points of distance 
joint, P and Q. The present analytical solution (solid line) and 
the Monte Carlo simulation with 30,000 samples (dash-dot 
line) are nearly indistinguishable. 

Samples number Error at  
4.00 rad/s 

Increase in computation 
time over the present 

method 
1,000 3.40% 1,516% 
5,000 1.63% 8,043% 
30,000 0.22% 47,383% 



 D. H. Choi et al. / Journal of Mechanical Science and Technology 22 (2008) 1747~1756 1755 
 

5. Conclusions 

This paper presents a statistical approach for the ef-
fects of manufacturing tolerances on dynamic equilib-
ria of a spatial multibody system undergoing pre-
scribed rotational motion. In this work, the tolerances 
of various design parameters including lengths, stiff-
nesses, inertias, and attachment positions are exam-
ined. In order to analytically calculate the statistical 
response of the dynamic equilibria to such tolerances, 
the first-order and the second-order of sensitivity 
information of dynamic equilibrium positions with 
respect to the design parameter are necessitated. 
Therefore, a new numerical algorithm for calculating 
the first-order sensitivities of dynamic equilibria 
based on the direct differentiation method is derived 
and the second-order sensitivities can be obtained by 
numerical procedures using finite differences. A gen-
eral multibody formulation, relative coordinates, and 
a velocity transformation technique are used to obtain 
the equations of motion and to identify the dynamic 
equilibria. In order to verify the present method’s 
accuracy and computational efficiency, two numeri-
cal examples are described: an open loop and a closed 
loop system. The standard deviations obtained ana-
lytically are compared with those obtained by Monte 
Carlo simulations with various sample numbers. 
However, in order to obtain reasonable results, the 
Monte Carlo method requires a huge number of sam-
ples and very expensive computational cost. The pre-
sent analytical method offers substantial improvement 
in computational efficiency when compared to the 
traditional Monte Carlo method. In some cases, an 
interesting equilibrium configuration having an oper-
ating condition for which the response has zero stan-
dard deviation to perturbations of a design parameter 
was found. That condition can be a useful design 
point to the extent that typical manufacturing toler-
ances or other sources of variation would have no 
effect on the dynamic equilibrium configuration.  
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